WELCOME...HORAS....

JHON KENNEDI SIMANUNGKALIT POETRA LOEMBAN LOBOE

Minggu, 16 Mei 2010

POWER of Techno

Generator


Generator adalah sebuah pesawat yang merubah energi mekanik menjadi energi listrik. Energi mekanik diperoleh dari mesin penggerak seperti mesin diesel, turbin dan lain-lain. Secara umum fungsi generator adalah untuk mensuplai arus pada sistem kelistrikan. Proses pembangkitan listrik pada generator menggunakan prinsip induksi yaitu apabila terjadi perpotongan medan magnet dengan penghantar, maka pada penghantar akan timbul gaya gerak listrik.Generator AC disebut juga Alternator.Altenator dapat mensuplai arus bukan hanya pada kecepatan tinggi tetapi juga pada putaran idle. Kerja sebuah alternator persis seperti generator DC, yang membedakan keduanya adalah konstruksi. Pada alternator medan magnet berputar, Penghantar diam, sedangkan pada generator medan diam, penghantar berputar.Pada alternator, kumparan penghantar dipasang pada rangka yang disebut stator. Medan magnet disebut rotor, bergerak ditengah stator. Statorterdiri dari konduktor yang dililitkan dengan jumlah yang lebih banyak, hal ini memungkinkan diperoleh induksi listrik yang lebih besar (dapat menghasilkan tegangan yang mencukupi pada putaran rendah). Untuk lebih lebih jelasnya, proses kerja alternator, seperti pada gambar.

prinsip kerja alternator.jpg

Sistem Starter Generator

Untuk menghidupkan mesin diperlukan tenaga dari luar yang dapat memutarkan poros engkol sampai terjadi pembakaran dan mesin bekerja. Tenaga luar inilah yang harus dihasilkan motor stater. Gambar di bawah memperlihatkan mekanisme sistem starter generator hampir sama dengan starter sebuah mobil.

mekanisme sistem starter.jpg

Mekanisme sistem starter Prinsip Kerja Motor Starter adalah mengubah energi listrik dari baterai menjadi energi mekanik berupa putaran pinion gear pada motor starter. Pada saat mesin start, putaran pinion gear ini dipindahkan ke ring gear yang terpasang pada bagian luar fly wheel, sehingga fly wheel bersama poros engkol berputar. Bila mesin sudah hidup, tenaga putar motor starter tidak diperlukan lagi, perkaitan antara piniongear dan ring gear harus dilepas. Ini terjadi secara otomatis ketika switch motor starter off

Pengukuran Bahan Bakar Generator

Bahan bakar dalam generator sedapat mungkin selalu penuh. Tangki bahan bakar yang tidak terisi penuh akan terisi udara yangmengandung uap air. Dalam keadaan dingin maka uap air tersebut akan mengembun danmenetes, bercampur dengan bahan bakar.Untuk mengetahui seberapa banyak jumlah bahan bakar dalam tangki banyak pemilik generator yang enggan melakukannya karena letak tangki bahan bakar yang agak tersembunyi sehingga jumlah bahan bakar di dalamnya tidak kelihatan dengan jelas. Untuk mengatasi hal tersebut maka hampir setiap generator sekarang ini dilengkapi dengan alat pengukur bahan baker dalam tangki. Jumlah bahan bakar dalam tangki langsung dapat diketahui dengan melihat panel instrument yang terletak diruang pengapian.Prinsip kerjanya pada kondisi pertama akan terjadi hubungan antara inputan dengan sensor sehingga jarum penunjuk tertarik ke arah E yang berarti kosong. Jika jumlah bahan bakar dalam tangki penuh maka pelampung akan terangkat dan akan memutuskan hubungan antara inputan dengan sensor. Maka pada kondisi kedua jarum menunjuk akan tertarik ke arah F berarti penuh.

konstruksi pengukur bahan bakar.jpg

Generator AC

Gambar:ac.jpg

Bagian utama generator AC terdiri atas magnet permanen (tetap), kumparan (solenoida). cincin geser, dan sikat. Pada generator. perubahan garis gaya magnet diperoleh dengan cara memutar kumparan di dalam medan magnet permanen. Karena dihubungkan dengan cincin geser, perputaran kumparan menimbulkan GGL induksi AC. OIeh karena itu, arus induksi yang ditimbulkan berupa arus AC. Adanya arus AC ini ditunjukkan oleh menyalanya lampu pijar yang disusun seri dengan kedua sikat. Sebagaimana percobaan Faraday, GGL induksi yang ditimbulkan oleh generator AC dapat diperbesar dengan cara:

· memperbanyak lilitan kumparan,

· menggunakan magnet permanen yang lebih kuat.

· mempercepat perputaran kumparan, dan menyisipkan inti besi lunak ke dalam kumparan.

Contoh generator AC yang akan sering kita jumpai dalam kehidupan sehari-hari adalah dinamo sepeda. Bagian utama dinamo sepeda adalah sebuah magnet tetap dan kumparan yang disisipi besi lunak. Jika magnet tetap diputar, perputaran tersebut menimbulkan GGL induksi pada kumparan. Jika sebuah lampu pijar (lampu sepeda) dipasang pada kabel yang menghubungkan kedua ujung kumparan. lampu tersebut akan dilalui arus induksi AC. Akibatnya, lampu tersebut menyala. Nyala lampu akan makin terang jika perputaran magnet tetap makin cepat (laju sepeda makin kencang).

Konstruksi Generator Arus Bolak-balik

Konstruksi generator arus bolak-balik ini terdiri dari dua bagian utama, yaitu : (1) stator, yakni bagian diam yang mengeluarkan tegangan bolak-balik, dan (2) rotor, yakni bagian bergerak yang menghasilkan medan magnit yang menginduksikan ke stator. Stator terdiri dari badan generator yang terbuat dari baja yang berfungsi melindungi bagian dalam generator, kotak terminal dan name plate pada generator. Inti Stator yang terbuat dari bahan ferromagnetik yang berlapis-lapis dan terdapat alur-alur tempat meletakkan lilitan stator. Lilitan stator yang merupakan tempat untuk menghasilkan tegangan. Sedangkan, rotor berbentuk kutub sepatu (salient) atau kutub dengan celah udara sama rata (rotor silinder). Konstruksi dari generator sinkron ini dapat dilihat pada Gambar 1

Prinsip Kerja Generator Arus Bolak-balik

Prinsip dasar generator arus bolak-balik menggunakan hukum Faraday yang menyatakan jika sebatang penghantar berada pada medan magnet yang berubah-ubah, maka pada penghantar tersebut akan terbentuk gaya gerak listrik.

Prinsip kerja generator arus bolak-balik tiga fasa (alternator) pada dasarnya sama dengan generator arus bolak-balik satu fasa, akan tetapi pada generator tiga fasa memiliki tiga lilitan yang sama dan tiga tegangan outputnya berbeda fasa 120° pada masing-masing fasa seperti ditunjukkan pada Gambar 2

Jumlah Kutub

Jumlah kutub generator arus bolak-balik tergantung dari kecepatan rotor dan frekuensi dari ggl yang dibangkitkan. Hubungan tersebut dapat ditentukan dengan persamaan :

f = pn

120

GeneratorTanpa Beban dan Berbeban.

♦ Generator Tanpa Beban (Beban Nol)

Jika poros generator diputar dengan kecepatan sinkron dan rotor diberi arus medan If, maka tegangan E0 akan terinduksi pada kumparan jangkar stator sebesar :

E0 = cnΦ

dimana :

c = konstanta mesin

n = putaran sinkron

Φ= fluks yang dihasilkan oleh If

Generator arus bolak-balik yang dioperasikan tanpa beban, arus jangkarnya akan nol (Ia = 0) sehingga tegangan terminal Vt = Va = Vo. Karena besar ggl induksi merupakan fungsi dari flux magnet, maka ggl induksi dapat dirumuskan: Ea = f (O), yang berarti pengaturan arus medan sampai kondisi tertentu akan mengakibatkan ggl induksi tanpa beban dalam keadaan saturasi seperti ditunjukkan pada Gambar 3.

Gambar 3 Hubungan dan Karakteristik Generator Tanpa Beban

♦ Generator Berbeban

Tiga macam sifat beban jika dihubungkan dengan generator, yaitu : beban resistif, beban induktif, dan beban kapasitif. Akibat pembeban ini akan berpengaruh terhadap tegangan beban dan faktor dayanya. Gam bar 4 menunjukkan jika beban generator bersifat resistif mengakibatkan penurunan tegangan relatif kecil dengan faktor daya sama dengan satu. Jika beban generator bersifat induktif terjadi penurunan tegangan yang cukup besar dengan faktor daya terbelakang (lagging). Sebaliknya, Jika beban generator bersifat kapasitif akan terjadi kenaikan tegangan yang cukup besar dengan faktor daya mendahului (leading).

Gambar 4 Karakteristik Berbeban

Sistem Penguat (Exciter)

Saat generator dihubungkan dengan beban akan menyebabkan tegangan keluaran generator akan turun, karena medan magnet yang dihasilkan dari arus penguat relatif konstan. Agar tegangan generator konstan, maka harus ada peningkatan arus penguatan sebanding dengan kenaikan beban. Gambar 5 menunjukkan sistem arus penguatan pada generator dan karakteristik tegangan keluarannya.

Gambar 5 Prinsip Kerja Exciter Generator

Keterangan :

Garis lengkung 1 : Karakteristik tegangan keluar tanpa beban yang diperoleh dari medan magnet minimum.

Garis lengkung 2 : Karakteristik tegangan dengan penambahan arus penguatan maksimum.

Garis lengkung 3 : Karakteristik yang bervariasi dengan mengatur arus penguatan sesuai kebutuhan beban.

Generator DC

Gambar:dc.jpg

Prinsip kerja generator (dinamo) DC sama dengan generator AC. Namun, pada generator DC arah arus induksinya tidak berubah. Hal ini disebabkan cincin yang digunakan pada generator DC berupa cincin belah (komutator).

Generator listrik adalah sebuah alat yang memproduksi energi listrik dari sumber energi mekanikal, biasanya dengan menggunakan induksi elektromagnetik. Proses ini dikenal sebagai pembangkit listrik. Walau generator dan motor punya banyak kesamaan, tapi motor adalah alat yang mengubah energi listrik menjadi energi mekanik. Generator mendorong muatan listrik untuk bergerak melalui sebuah sirkuit listrik eksternal, tapi generator tidak menciptakan listrik yang sudah ada di dalam kabel lilitannya. Hal ini bisa dianalogikan dengan sebuah pompa air, yang menciptakan aliran air tapi tidak menciptakan air di dalamnya. Sumber enegi mekanik bisa berupa resiprokat maupun turbin mesin uap, air yang jatuh melakui sebuah turbin maupun kincir air, mesin pembakaran dalam, turbin angin, engkol tangan, energi surya atau matahari, udara yang dimampatkan, atau apapun sumber energi mekanik yang lain.

Gambar Generator abad 20 awal
Faraday
Cakram Faraday
Pada 1831-1832 Michael Faraday menemukan bahwa perbedaan potensial dihasilkan antara ujung-ujung konduktor listrik yang bergerak tegak lurus terhadap medan magnet. Dia membuat generator elektromagnetik pertama berdasarkan efek ini, menggunakan cakram tembaga yang berputar antara kutub magnet tapal kuda. Proses ini menghasilkan arus searah yang kecil. Desain alat yang dijuluki ‘cakram Faraday’ itu tidak efisien dikarenakan oleh aliran arus listrik yang arahnya berlawanan di bagian cakram yang tidak terkena pengaruh medan magnet. Arus yang diinduksi langsung di bawah magnet akan mengalir kembali ke bagian cakram di luar pengaruh medan magnet. Arus balik itu membatasi tenaga yang dialirkan ke kawat penghantar dan menginduksi panas yang dihasilkan cakram tembaga. Generator homopolar yang dikembangkan selanjutnya menyelesaikan permasalahan ini dengan menggunakan sejumlah magnet yang disusun mengelilingi tepi cakram untuk mempertahankan efek medan magnet yang stabil. Kelemahan yang lain adalah amat kecilnya tegangan listrik yang dihasilkan alat ini, dikarenakan jalur arus tunggal yang melalui fluks magnetik.
Dinamo

Dinamo adalah generator listrik pertama yang mampu mengantarkan tenaga untuk industri, dan masih merupakan generator terpenting yang digunakan pada abad 21. Dinamo menggunakan prinsip elektromagnetisme untuk mengubah putaran mekanik menjadi listrik arus bolak-balik.

Dinamo pertama berdasarkan prinsip Faraday dibuat pada 1832 oleh Hippolyte Pixii, seorang pembuat alat Prancis. Alat ini menggunakan magnet permanen yang diputar oleh sebuah "crank". Magnet yang berputar diletakaan sedemikian rupa sehingga kutub utara dan selatannya melewati sebongkah besi yang dibungkus dengan kawat. Pixii menemukan bahwa magnet yang berputar memproduksi sebuah pulsa arus di kawat setiap kali sebuah kutub melewati "coil". Lebih jauh lagi, kutub utara dan selatan magnet menginduksi arus di arah yang berlawanan. Dengan menambah sebuah komutator, Pixii dapat mengubah arus bolak-balik menjadi arus searah.

Jenis-jenis Gangguan Generator

1. Gangguan Penggerak Awal

Generator dengan penggerak awal mesin diesel harus dilengkapi dengan pengaman terhadap kerja balik atau gangguan monitoring karena gangguan-gangguan mekanik. Akibat adanya tekanan balik maka generator perlu dilengkapi dengan pengaman gangguan monitoring untuk menghindari kerusakan-kerusakan yang terjadi.

2. Gangguan Hilang Penguat

Meskipun gangguan pada penguat generator jarang terjadi, namun gangguan ini dapat menyebabkan terganggunya kelangsungan kerja generator. Untuk itu pada generator perlu dilengkapi pengaman terhadap hilang penguatan (Loss of Field Relay).

3. Gangguan Arus Lebih

Gangguan arus lebih pada generator sering kali terjadi akibat adanya hubung singkat atau beban lebih. Pada saat ini generator telah dibuat sedemikian rupa sehingga mampu bertahan terhadap adanya arus lebih, meskipun tidak terlalu lama. Namun demikian pengaman terhadap arus lebih sangat diperlukan agar generator terhindar dari kerusakan akibat arus lebih yang berkepanjangan (Over Current Relay).

4. Gangguan Putaran Lebih

Putaran lebih pada generator disebabkan adanya penurunan beban yang mendadak. Sebenarnya pada generator telah dilengkapi dengan perangkat governor. Pada saat terjadinya pelepasan beban, governor tersebut akan mengatur atau menutup katup darurat (emergency valve) sehingga tidak terjadi putaran yang berlebihan. Namun demikian generator masih perlu dilengkapi dengan pengaman terhadap putaran lebih yang mampu memberikan sinyal triping pada pemutus tenaga (Over Speed Relay)

5. Gangguan Tegangan Lebih

Tegangan lebih yang dibangkitkan generator terutama disebabkan oleh putaran lebih akibat pelepasan beban yang mendadak. Governor pada generator mengatur kecepatan putaran agar putarannya tetap normal. Namun, rentang waktu yang diperlukan cukup lama sehingga pada saat itu terjadi tegangan lebih yang sangat membahayakan piranti-piranti kelistrikan lainnya. Tegangan lebih ini akan merusakkan isolasi kumparan generator akibat panas yang berlebihan. (Over Voltage Relay)

6. Gangguan Ketidakseimbangan Beban.

Ketidakseimbangan beban generator biasanya disebabkan adanya kebocoran atau hubung singkat penghantar ketanah atau antarpenghantar. Juga bisa disebabkan oleh adanya beban yang tidak seimbang pada ketiga fase generator. Gangguan ini menyebabkan adanya arus urutan negatif yang mengalir pada penghantar bernilai nol. Pada keadaan demikian generator harus segera diamankan agar kerusakan dapat dihindari (Neutral Ground Relay)

Tidak ada komentar:

Posting Komentar